Einige Komplexcarbide und -nitride in den Systemen Ti-{Zn, Cd, Hg}-{C, N} und Cr-Ga-N

0. Beckmann, H. Boller, H. Nowotny und F. Benesovsky Aus dem Institut für Physikalische Chemie der Universität Wien und der Metallwerk Plansee A.G., Reutte, Tirol

Mit 1 Abbildung

(Eingegangen am 7. Mai 1969)

Die Phasen $Ti_3(Ti, Zn)C$, $Ti_3(Ti, Zn)N$, $Ti_3(Ti, Cd)C$, $Ti_3(Ti, Cd)N$, $Ti_3(Ti, Hg)C$, $Ti_3(Ti, Hg)N$ besitzen Perowskitstruktur. Cr_2GaN ist eine H-Phase (Ti_2SC -Typ).

Some Complex Carbides and Nitrides in the Systems Ti-{Zn, Cd, Hg}-{C, N} and Cr-Ga-N

The phases Ti₃(Ti, Zn)C, Ti₃(Ti, Zn)N, Ti₃(Ti, Cd)C, Ti₃(Ti, Cd)N, Ti₃(Ti, Hg)C, Ti₃(Ti, Hg)N have the perowskite structure. Cr₂GaN is a H-phase (Ti₂SC-type).

Perowskitcarbide und -nitride in den Systemen Ti-{Zn, Cd, Hg}-{C, N}

Kurka und Ettmayer berichteten vor kurzem über ein Oxid der Formel Ti₃HgO mit Perowskitstruktur¹. Es war daher von Interesse zu prüfen, ob analoge Carbide und Nitride hergestellt werden können, zumal in den Systemen Ti-{Al, In, Tl}-C und Ti-{In, Tl}-N Perowskitearbide und -nitride bekannt sind^{2, 3}.

Entsprechende Ansätze wurden in Tantalhülsen, die in Quarzröhrchen eingeschmolzen waren, gesintert. Bis auf die Hg-haltigen Proben kamen stets leichtverpreßte Pulvermischungen zur Umsetzung. Stickstoff wurde in Form von TiN eingesetzt. Die röntgenographische Untersuchung erfolgte durch *Debye—Scherrer*-Aufnahmen.

¹ F. Kurka und P. Ettmayer, Mh. Chem. 99, 1836 (1968).

² W. Jeitschko, H. Nowotny und F. Benesovsky, Mh. Chem. 95, 319 (1964).

³ W. Jeitschko, H. Nowotny und F. Benesovsky, Mh. Chem. 95, 436 (1964).

	Tabelle 1. Zusamm	iensetzung, Herst	ellung und (Gitterparam	eter vor	Perowskiten
System	Zusarameusetzung des Ansatzes $T_{1}:M:X$	Der Intensitäts- berechnung zugrunde gelegte Zusammensetzung	Glühbehan Temperatur (°C)	dlung Stunden	φ	Bemerkung
Ti-Zn-C	70:20:10 66,6:16,7:16,7	Ti ₃ (Ti _{0,1} Zn _{0,9})C _{0,5}	006	48 48	4,162	etwas TiC, Ti und Ti ₂ ZnC mehr TiC als oben
Ti-ZnN	70:20:10 66,6:16,7:16,7	Ti ₃ (Ti _{0,1} Zn _{0,9})N _{0,5} Ti ₃ (Ti _{0,2} Zn _{0⁹8})N _{0,8}	006	48 48	4,109 4,104	röntgenographisch einphasig Spuren von Ti
Ti-Cd-C	60: 20: 20 66, 6: 16, 7: 16, 7	Ti3(Ti0,1Cd0,9)C0,9	006	48 48	$4,229_5$ $4,230_3$	etwas Ti ₂ CdC Spuren von Ti
TriCdN	66,6:16,7:16,7		900 750 anschl.	48 400 anschl.	4,180	etwas Ti und Cd
Ti—Hg—C	50:25:25 55,6:33,3:11,1	${ m Ti}_8({ m Ti}_0,{}_2{ m Hg}_0,{}_8){ m C}$	750 750	170 170	$4,212_{4}$	viel freies Hg, röntgenogra- phisch einphasig viel freies Hg, geringe Mengen einer unbekannten Phase
TiHgN	66, 6: 16, 7: 16, 7 60: 20: 20	Ti ₃ (Ti _{0,2} Hg _{0,8})N Ti ₃ (Ti _{0,2} Hg _{0,8})N	950 950	12 12	4,162 4,161	freies Hg, geringe Mengen Ti; TiN scheint nicht auf freies Hg, röntgenographisch einphasig

1466

O. Beckmann u. a.: [Mh. Chem., Bd. 100

H. 5/1969]

(hkl)	$\sin^2\theta \cdot 10^3$ gem.	$\sin^2\theta \cdot 10^3$ ber.	I, gesch.	I, ber.
(100)		34,3		1,2
(110)	68,7	68,5	SS	4,1
(111)	103,9	102,8	st	100,0
(200)	137,9	137,0	\mathbf{mst}	52,5
(210)		171,3	_	0,1
(211)	204,7	205,5	SSS	1,6
(220)	275,3	274,0	m	32,1
(300) (221)	307,9	308,3	SSS	0,5
(310)	341,4	342,5	SSS	0,6
(311)	378,2	376,8	m	33,7
(222)	411,5	411,0	s	10,5
(320)		445,3		0,2
(321)	480,0	479,5	SSS	0,7
(400)	548,8	548,0	SS	5,3
$(410) \\ (322) $	<u>.</u>	582,3		0,2
(411) (330)	616,8	616,5	SSS	0,4
(331)	651,2	650,8	\mathbf{ms}	17,6
(420)	685,7	685,0	\mathbf{ms}	19,0
(421)	and the second se	719,3		0,2
(332)		753,5		0,2
(422)	822,7	822,0	m	22,4
$(500) \\ (430) $		856,3		0,1
(510) (431)		890,5		0,4
(511)) (333)∫	924,4	924,8	mst	41,3

Tabelle 2. Auswertung	und Intensitätsberechnung einer Pulver-				
aufnahme eines	Perowskites im System Ti-Zn-C*				
$(CuK \alpha_1 - Strahlung)$					

* Ansatz: 70 At% Ti, 20 At% Zn, 10 At% C. Intensität
sberechnung für $\rm Ti_3(Ti_{0,1}Zn_{0,9})C_{0,5}.$

In allen genannten Systemen konnte die gesuchte Perowskitphase nachgewiesen werden. Gitterparameter, Zusammensetzung und Herstellungsbedingungen sind aus Tab. 1 ersichtlich. Tab. 2 und 3 geben die Auswertung von Pulveraufnahmen von $Ti_3(Ti_{0,1}Zn_{0,9})C_{0,5}$ und $Ti_3(Ti_{0,2}Hg_{0,8})N$ wieder. Es hat den Anschein, daß in allen Perowskitphasen der Tab. 1 ein Teil des *B*-Metalls durch Titan substituiert ist; merkliche homogene Bereiche konnten jedoch nicht nachgewiesen werden. O. Beckmann u. a.:

(hkl)	$\frac{\sin^2\theta \cdot 10^3}{\text{gem.}}$	$\sin^2\theta \cdot 10^3$ ber.	I, gesch.	I, ber.
(100)	34,5	34,3	ms	35,3
(110)	67.9	68.5	m	51,3
(111)	102,8	102,8	\mathbf{st}	100,0
(200)	136,7	137,0	\mathbf{mst}	57,2
(210)	171,4	171,3	\mathbf{ms}	18,7
(211)	204,7	205,5	\mathbf{ms}	20,7
(220)	274,3	274,0	\mathbf{mst}	36,3
(300) (221)	309,5	308,3	s	9,8
(310)	342.2	342.5	s	9,1
(311)	375,7	376,8	\mathbf{mst}	37,5
(222)	411,5	411,0	\mathbf{ms}	12,3
(320)	444,3	445,3	ss	4,7
(321)	479,1	479,5	\mathbf{ms}	11,3
(400)	547,1	548,0	S	6,5
(410) (322)	581,7	582,3	s	7,3
(411) (330)	615,9	616,5	s	7,1
(331)	649,5	650,8	\mathbf{m}	21,3
(420)	684,1	685,0	\mathbf{m}	23,9
(421)	719,2	719,3	s	7,5
(332)	753,0	753,5	s	5,1
(422)	821,4	822,0	\mathbf{mst}	29,0
(500) (430)	855,4	856,3	s	6,3
(510) (431)	890,2	890,5	m	22,5
(511) (333)	924,2	924,8	\mathbf{st}	52,8

Tabelle 3. Auswertung	und Intensitätsberechnung einer Pulver-				
aufnahme eines	Perowskites im System Ti-Hg-N*				
$(CuK\alpha_1 - Strahlung)$					

* Ansatz: 66,6 At% Ti, 16,7 At% Hg, 16,7 At% N; Intensitätsberechnung für $Ti_{8}(Ti_{0,2}Hg_{0,8})N$. Mark-Röhrehen.

Die Substitution erkennt man deutlich an den quecksilberhaltigen Phasen, bei welchen die Intensitätsrechnung bezüglich des Ti/Hg-Verhältnisses sehr empfindlich ist [insbesondere die Reflexpaare (321)/(400) und (410)/(322)]. Mit der angegebenen teilweise statistischen Besetzung erhält man die beste Übereinstimmung. Mit diesem Befund steht auch die Tatsache in Einklang, daß diese Proben immer etwas freies Quecksilber enthalten. Da der Gitterparameter von Ti₃(Ti, Hg)N fast gleich groß ist wie jener von Ti₃HgO, wurden Ansätze im binären Bereich Ti—Hg geprüft, um zu entscheiden, ob bei den gewählten Herstellungsbedingungen ein derartiges Oxid durch Transportreaktion über SiO (Quarzröhrchen) entstehen kann. Bei diesen Kontrollversuchen lag nach einer Glühung bei 750°C lediglich γ -Ti₃Hg vor, wogegen bei 950°C Titan mit etwas

aufgeweitetem Zellvolumen neben freiem Quecksilber vorlag. Interessant ist die Stabilisierung, daß nämlich das Komplexnitrid noch bei Temperaturen existiert, bei welchen die binären $Ti-M^*$ -Phasen bereits zerfallen sind. Ein ähnlicher Fall ist $Ti_3(Ti, Cd)C$.

Es sei noch darauf hingewiesen, daß die Gitterparameter der quecksilberhaltigen Perowskite kleiner sind als die der cadmiumhaltigen, was offenbar mit dem Anteil an T/M-Substitution zusammenhängt.

Die H-Phase Cr₂GaN

Die Probenherstellung erfolgte durch Sintern von Chrom, CrN und

Abb. 1. Achsenverhältnis c/a und Gruppennummer N des T-Metalls der H-Phasen in den Systemen (Ti, V, Cr)—Ga—(C, N)

Gallium in evakuierten Quarzröhrchen (fünf Tage bei 750° C). Die Gitterparameter der aufgefundenen H-Phase sind:

$$a = 2,88_1 \text{ Å}$$
 $c = 12,77 \text{ Å}$ $c/a = 4,43_1$

Tab. 4 gibt die Auswertung und Intensitätsberechnung einer Pulveraufnahme wieder. Der freie Parameter ergibt sich zu z = 0,086. In Abb. 1 ist das Achsenverhältnis c/a der H-Phasen mit Gallium und den Übergangsmetallen Ti, V, Cr dargestellt. Man beobachtet eine Abhängigkeit des Achsenverhältnisses von der Gruppennummer des Übergangsmetalls, die jedoch nicht so ausgeprägt ist wie die Abhängigkeit vom Metametall⁴. Das Ansteigen der Achsenverhältnisse mit steigender Ordnungszahl des Übergangsmetalles kann mit dessen zunehmender Elektronegativität, die einen weniger polaren Charakter der H-Phase zur Folge hat, korreliert werden. Die Nitride haben gegenüber den Carbiden durchwegs ein höheres Achsenverhältnis.

^{*} M = Metametall.

⁴ H. Boller und H. Nowotny, Mh. Chem. 97, 1053 (1966).

(hkil)	$\sin^2 \theta \cdot 10^3$ gem.	$\sin^2\theta \cdot 10^3$ ber.	I gesch.	I ber.
(0002)	32,3	32,2	ss	0,2
(0004)	129,0	128,8	s	1,6
$(10\overline{1}0)$	210,4	210,8	m	19,4
$(10\overline{1}1)$	219,0	218,8	s	1,5
$(10\overline{1}2)$	242,5	243,0	ms	3,2
$(10\overline{1}3)$	282,4	283,2	sst	100,0
(0006)	290,3	289,8	m	18,5
$(10\overline{14})$		339,6		0,1
(1015)	413,2	412,0	s	1,5
$(10\overline{1}6)$	501,7	500,6	\mathbf{m}	18,3
(0008)	515,7	515,2	SS	0,6
$(10\overline{1}7)$	605,7	605,2	SS	0,2
$(11\overline{2}0)$	632,8	632,4	\mathbf{mst}	28,0
$(11\overline{2}2)$	664,4	664,6	ss	0,4
$(10\overline{1}8)$		726,0		0,1
$(11\overline{2}4)$	762,0	761,2	s	1,4
(00010)		805,0	—	0,0
$(20\overline{2}0)$	844,4	843,2	ms	6,3
$(20\overline{2}1)$	849,8	851,2	SS.	0,9
$(10\overline{1}9)$	863,0	862,8	st	51,0
$(20\overline{2}2)$	876,2	875,4	S	1,3
$(20\overline{2}3)$	914,6	915,6	\mathbf{st}	65,4
$(11\overline{2}6)$	922,2	922,2	\mathbf{sst}	80,7
$(20\overline{2}4)$	<u> </u>	972,0		0,0

Tabelle 4. Auswertung und Intensitätsberechnung einer Pulveraufnahme der H-Phase Cr₂GaN (CrKα-Strahlung)